If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-5a^2+2=0
We add all the numbers together, and all the variables
-4a^2+2=0
a = -4; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-4)·2
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*-4}=\frac{0-4\sqrt{2}}{-8} =-\frac{4\sqrt{2}}{-8} =-\frac{\sqrt{2}}{-2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*-4}=\frac{0+4\sqrt{2}}{-8} =\frac{4\sqrt{2}}{-8} =\frac{\sqrt{2}}{-2} $
| 60=21.50h=124.50 | | 4x-32=2x+12 | | q^2-2q+10=0 | | 4x+5(5x-39)=95 | | c/4+2=8 | | 3(y-1)=-6y-21 | | 2−16t=6(−3t+2)t=t= | | 2t−2=2 | | -14x-20+3=53 | | b+8/2=19 | | -2p+10=2 | | 17v+18=18 | | 0.4a-0.12=5.6 | | 5(q+2)=15 | | 5t+4=14 | | 5z-9-3z=-17 | | 8h=-19+7h | | 20=s35 | | 3q+6q-1=8 | | -2(z-9)=-20 | | 5x-35+2.00x=70 | | -10-18y=-20y | | 12x-11x=8 | | 4x^2-8x-86=-8 | | 3(h+3)=-15 | | 3x+4x+18=12 | | 8x+100=8x+20+50 | | 3=q-7/3 | | -7(-8p+1)-6=-349 | | q/3-17=-15 | | 18.6÷x=0.02 | | -11v+3v=-16 |